EECS 440 System Design of a Search Engine

Winter 2021
Lecture 6: SSL

Nicole Hamilton
https://web.eecs.umich.edu/~nham/
nham@umich.edu

https://web.eecs.umich.edu/~nham/
mailto:nham@umich.edu

Agenda

Course details.

Correction on the Host: parameter.
Review of reading an HTTP webpage.
Read an HTTPS webpage.

TLS, SSL and the OpenSSL library.
LinuxGetSSL.

Agenda

Course details.

Correction on the Host: parameter.
Review of reading an HTTP webpage.
Read an HTTPS webpage.

TLS, SSL and the OpenSSL library.
LinuxGetSSL.

details

Group photos due Feb 8 (tonight) and I'll
want to meet with each group shortly after.

Project plans due Feb 14.
Homework 3 due date TBD.

o A WN

Agenda

Correction on the Host: parameter.
Review of reading an HTTP webpage.
Read an HTTPS webpage.

TLS, SSL and the OpenSSL library.
LinuxGetSSL.

Host: parameter

Lots of servers host lots of websites at the same
IP address and port number.

They distinguish which website you mean by the
Host: parameter.

So, it’s not redundant.

My websites are on a GoDaddy machine with lots of other websites.

tcsh-2% ./LinuxGetSsl https://nicolehamilton.com

Service = https, Host = nicolehamilton.com, Port = , Path =
Host address length = 16 bytes

Family = 2, port = 443, address = 160.153.46.5

GET / HTTP/1.1

Host: nicolehamilton.com

User-Agent: LinuxGetSsl/2.0 nham@umich.edu (Linux)

Accept: */*

Accept-Encoding: identity

Connection: close

HTTP/1.1 200 OK

Date: Thu, 19 Sep 2019 17:02:10 GMT

Server: Apache

Upgrade: h2,h2c

Connection: Upgrade, close

Last-Modified: Thu, 11 Oct 2018 21:59:57 GMT
ETag: "c4206db-3f6f-577fb177483al1"
Accept-Ranges: bytes

Content-Length: 16239

So, both nicolehamilton.com and hamiltonlabs.com are at 160.153.46.5:443.

tcsh-2% ./LinuxGetSsl https://nicolehamilton.com

Service = https, Host = nicolehamilton.com, Port = , Path =
Host address length = 16 bytes

Family = 2, port = 443, address = 160.153.46.5

GET / HTTP/1.1

Host: nicolehamilton.com

User-Agent: LinuxGetSsi/ 2.0 nham@umich.edu (Linux)

Accept: */*

Accept-Encoding: identity

Connection: close

HTTP/1.1 200 OK

Date: Thu, 19 Sep 2019 17:02:10 GMT

Server: Apache

Upgrade: h2,h2c

Connection: Upgrade, close

Last-Modified: Thu, 11 Oct 2018 21:59:57 GMT
ETag: "c4206db-3f6f-577fb177483al1"
Accept-Ranges: bytes

Both nicolehamilton.com and hamiltonlabs.com are at 160.153.46.5:443.

tcsh-3% ./LinuxGetSsl https://hamiltonlabs.com

Service = https, Host = hamiltonlabs.com, Port = , Path =
Host address length = 16 bytes

Family = 2, port = 443, address = 160.153.46.5

GET / HTTP/1.1

Host: hamiltonlabs.com

User-Agent: LinuxGetSsi/ 2.0 nham@umich.edu (Linux)
Accept: */*

Accept-Encoding: identity

Connection: close

HTTP/1.1 200 OK

Date: Thu, 19 Sep 2019 17:03:31 GMT

Server: Apache

Upgrade: h2,h2c

Connection: Upgrade, close

Last-Modified: Sat, 15 Jul 2017 22:39:19 GMT
ETag: "c420859-1a31-55462d61856¢f"
Accept-Ranges: bytes

Content-Lengtiin. 6705

The server response depends on which Host: was specified.

€& diff -b! nicolehamilton.txt hamiltonlabs.txt -

Family = 2, port = 443, address = 160.153.46.5
GET / HTTP/1.1

Host: nicolehamilton.com

Host: hamiltonlabs.com

User-Agent: LinuxGetSsl1/2.0 nham@umich.edu (Linux)
Accept: */*

Accept- Encodi ing: identity

Connection: close

HTTP/1.1 200 OK
Date: Thu, 19 Sep 2019 17:05:04 GMT

: Thu, 19 Sep 2019 17:04:50 GMT

Apache
h2,h2c

Connection: Upgrade, close
Last-Modified: Thu, 11 Ooct 2018 21:59:57 GMT
ETag: "c4206db-3f6f-577fb177483al1"
Last-Modified: Sat, 15 Jul 2017 22:39:19 GMT
ETag: "c420859-1a31-55462d61856c¢f"
Accept-Ranges: bytes
Content-Length: 16239
Content-Length: 6705
Vary: Accept-Encoding,User-Agent
Content-Type: text/html

N5+ <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

<|DOCTYPE htm]l PUBLIC "—//W3C//DTD XHTML 1.0 Str1ct//EN"
shEEPE A W w3.org/TR/xhtm11/DTD/ xhtmTl strict.dtd"

<html xmlns="http://www.w3.0rg/1999/xhtm1"

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"

<title>Nicole Hamilton</title>
<title>Hamilton Laboratories</title>

<link href="Styles/Hamilton.css" re1— sty1esheet type— text/css"/>
<link href="Styles/PrintStyles.css" rel="stylesheet” media="print" t
-—— more --- (Press H for Help)

10

If you specify Host: 160.153.46.5, you get GoDaddy’s login page for that server.

= O X
@ Coming Soon X -
&« C A Notsecure | 160.153.46.5 w O H ¢ & m ',‘ :
l‘-l) Seattle Pl WY WSJ) @ NYTimes WP WaPost m CSE Advising Calen... -:t:' Canvas m Pierpont menu » Other bookmarks

@
Future home of something quite cool.

If you're the site owner, log in to launch this site

If you are a visitor, check back soon.

11

o AW

Agenda

Review of reading an HTTP webpage.
Read an HTTPS webpage.

TLS, SSL and the OpenSSL library.
LinuxGetSSL.

12

Browser

HTTP over TCP/IP

i N
J=te

O

-
h

Website

Imagine the connection between a browser and a website as a long pipe.

At each end is a socket you can read or write from as if it was a file.

Anything written into one end pops out and can be read at the other.

13

HTTP over TCP/IP

O

Browser } ()

To read a page from a website:

Create a socket.
Connect the socket to that address.

Send a GET message to request the page.

vk e

Read what comes back.

Look up the TCP/IP address of the website.

Website

14

TCP/IP Model

DHCP, DNS, FTP, HTTP, HTTPS,
POP, SMTP, SSH, etc.

TCP and UDP

IP address: IPv4 or IPv6

Link level: MAC address
Physical: Cable, fiber, wireless

Application

Transport

Internet

Network Access

15

To get an IP address

Parse the HTTPS path to identify the host (domain
name) we’re trying to reach.

Find the IP address for that host using a Domain
Name Server (DNS).

DNS Records

Type Name Value TTL Actions

A @ 160.153.46.5 600 seconds

A admin 160.153.46.5 600 seconds
A mail 160.153.46.5 600 seconds

CNAME webmail @ 1 Hour
CNAME www @ 1 Hour

MX @ mail.hamiltonlabs.com (Priority: ©) 1 Hour
NS @ ns6l.domaincontrol.com 1 Hour
NS @ ns62.domaincontrol.com 1 Hour
SOA @ Primary nameserver: ns6l.domaincontrol.com.

An A record defines a host address.
A CNAME record defines a canonical name for alias.
An MX (Mail eXchange) record defines a mail server.
An NS record defines a name server.

Edit

600 seconds

An SOA (Start of Authority) defines the primary name server.

We usually rely on DHCP
(Dynamic Host Configuration
Protocol) to assign an IP address
to our machine and DNS server.

DHCP

Internet Protocol Version 4 (TCP/IPv4) Properties

General Alternate Configuration

You can get IP settings assigned automatically if your network
supports this capability. Otherwise, you need to ask your network
administrator for the appropriate IP settings.

@®@:0btain an IP address automatically:

(O Use the following IP address:

(® Obtain DNS server address automatically

(O Use the following DNS server addresses:
|
)

Validate settings upon exit A vancod

18

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host and a service,
getaddrinfo() returns one or more addrinfo structures, each of which contains
an Internet address that can be specified in a call to bind(2) or connect(2).

19

Here’s an example use.

// Get the host address, supplying hints for
// what we're looking for.

struct addrinfo *address, hints;
memset(&hints, @, sizeof(hints));
hints.ai family = AF_INET;

hints.ai socktype = SOCK_ STREAM;
hints.ai protocol = IPPROTO _TCP;

int getaddrResult = getaddrinfo(url.Host,
*url.Port ? url.Port : "80", &hints, &address);

Later, it must be freed.

freeaddrinfo(address);

20

This is what the addrinfo structure looks like. It contains an Internet address
that can be specified in a call to bind(2) or connect(2).

struct addrinfo {

int al_flags;

int ai_family;
int ail_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;

char *ai canonname;

struct addrinfo *ai_next;

}s

The interesting part is the ai_addr, the actual IP address, which we can print.

PrintAddress((sockaddr _in *)address->ai_addr,
sizeof(struct sockaddr));

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

int close(int fd);

socket() creates an endpoint for communication and returns a file descriptor that can
be used for reading and writing.

22

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The domain argument specifies a communication domain. Here are the most
common:

Name Purpose

AF_UNIX, AF_LOCAL Local communication
AF_INET IPv4 Internet protocols
AF_INET6 IPv6 Internet protocols

23

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

int close(int fd);

The socket has the indicated type, which specifies the communication semantics. The
most common is SOCK_STREAM, a sequenced, reliable connection with two-way byte
streams.

The protocol is usually IPPROTO_TCP.

24

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

connect() connects the socket to the specified IP address. The addrlen argument
specifies the size of addr structure.

A sockaddr * is actually a generic pointer caste from one of several possible address
structures, depending on the type of a connection. For an internet connection, you'll
actually use a sockaddr_in (an internet sockaddr).

25

Here’s an example creating a socket and connecting it to an address.

// Create a TCP/IP socket.

int s = socket(AF_INET, SOCK_STREAM, IPPROTO TCP);
assert(s != -1);

// Connect the socket to the host address.
int connectResult = connect(s, address->ai_addr,

sizeof(struct sockaddr));
assert(connectResult == 0);

26

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size t len, int flags);
ssize t recv(int sockfd, void *buf, size t len, int flags);

send() writes data into the socket. recv() reads data. Flags allow close-on-exec,
noblocking reads/writes and other options.

The only difference between send() and write() or between recv() and read() is the

presence of flags. With a zero flags argument, send() is equivalent to write() and recv()
is equivalent to write().

27

Here’s a sample GET message we might send. Notice that the User-agent field
must contain your contact info in 440.

GET / HTTP/1.1

Host: www.nytimes.com

User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*

Accept-Encoding: identity

Connection: close

Some sites will not even respond without a User-Agent field. It’s a free text
field and can be anything as long as it exists. It’s typically the name of the
software product that generated the Get + a slash followed by a version
number. The OS or build environment is usually given in parens.

The Accept: and Accept-Encoding: fields are not required but typically
provided.

Here’s an example reading from a socket and writing to stdout.

char buffer[10240];
int bytes;

while ((bytes = recv(s, buffer, sizeof(buffer), @)) > 0)
write(1, buffer, bytes);

We'll talk more about read() and write() when we get to the filesystem.

Here’s the entire main() for LinuxGetUrl, minus only all the code.

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main(int argc, char **argv)

{
//

//
//
//
//

//
//

Parse the URL

Get the host address.

Create a TCP/IP socket.

Connect the socket to the host address.
Send a GET message.

Read from the socket until there's no more data, copying it to
stdout.

Close the socket and free the address info structure.

30

Agenda

4. Read an HTTPS webpage.
5. TLS, SSL and the OpenSSL library.
6. LinuxGetSSL.

31

encrypted

Browser

HTTPS over TCP/IP

decrypted

vy

i N
J=te

decrypted

=4

Website

encrypted

Under HTTPS, data is encrypted before being sent and decrypted when
received using a public key mechanism that allows both ends to agree on

a secret session key.

Done using a Secure Socket Layer (SSL) wrapper around a regular socket.

32

encrypted

Browser

HTTPS over TCP/IP

decrypted

vy

i N
J=te

decrypted

=4

Website

encrypted

Under HTTPS, data is encrypted before being sent and decrypted when
received using a public key mechanism that allows both ends to agree on

a secret session key.

Done using a Secure Socket Layer (SSL) wrapper around a regular socket.

Here, we’ll use the OpenSSL library.

33

HTTP over TCP/IP

O

Browser } ()

To read a page from a website:

Create a socket.
Connect the socket to that address.

Send a GET message to request the page.

vk e

Read what comes back.

Look up the TCP/IP address of the website.

Website

34

Website

encrypted HTTPS over TCP/IP decrypted
i N y
Browser Ve O O‘
decrypted encrypted

To read a page from a website:

Look up the TCP/IP address of the website.

Create a socket.

Connect the socket to that address.

Build an SSL layer and establish a secure connection.

Send a GET message to request the page.

SR A S o

Read what comes back.

35

Website

encrypted HTTPS over TCP/IP decrypted
i N y
Browser Ve O O‘
decrypted encrypted

To read a page from a website:

Look up the TCP/IP address of the website.

Create a socket.

Connect the socket to that address.

Build an SSL layer and establish a secure connection.

Send a GET message to request the page.

o U h WM R

Read what comes back.

36

Secret communications

Traditionally, two parties would have to agree
on a method and key for secret
communications.

A book owned by both parties might be used
with messages encrypted as references to
page, line and word numbers, PPPLLWW.

Mechanical methods like the German Enigma
relied on secret hardware and a key.

Problems:

1. You need a way of communicating
securely how you'll do it before you can
doit.

2. Secrecy depends on the secrecy of both
the key and the method.

Image source: https://en.wikipedia.org/wiki/Enigma_machine

https://en.wikipedia.org/wiki/Enigma_machine

Insights

The security of the system should only depend on
secrecy of the key, not the secrecy of the method.

It should be possible for anyone to see how
messages are encrypted, given the key, but without

the key, knowing how it's done isn't helpful in
breaking the message.

Diffie-Hellman key exchange, 1976

k!
v /"‘ y

Whitfield Diffie Martin Hellman Ralph Merkle

Image sources: https://en.wikipedia.org/wiki/Whitfield Diffie

https://en.wikipedia.org/wiki/Martin_Hellman

https://en.wikipedia.org/wiki/Ralph Merkle

https://en.wikipedia.org/wiki/Whitfield_Diffie
https://en.wikipedia.org/wiki/Martin_Hellman
https://en.wikipedia.org/wiki/Ralph_Merkle

RSA public key encryption, 1978

i s

;{7

Ron Rivest Adi Shamir | Leonard Adleman

Image sources: https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

Public key encryption

Uses pairs of private and public keys that are related by a mathematical
formula that’s hard to reverse, factoring of very large numbers.

To get started:
1. |create (or pick) a private key which | keep secret,

2. then use that to create a public key, which | can share with the
world.

If | want to send you an encrypted message:
1. lencrypt using my private key and your public key.
2. You decrypt using my public key and your private key.

Does not require a secure channel for initial exchange of secret keys.

SSL / TLS Handshake

Client

Sends a message to server with a list of cipher suites and SSL/TLS
versions it supports.

Chooses a cipher suite and TLS version and sends its certificate and
public key.

Verifies certificate, extracts public key, uses it to encrypt a new
pre-master key, which it sends to the server.

I Uses its private key to decrypt the pre-master key.

I Both use the pre-master key to compute a shared secret key.

Sends encrypted message announcing it's switching to encryption with
the shared secret.

Decrypts and verifies message, sends message encrypted with the
shared secret.

I Both use encryption using the shared secret for the rest of the session.

Server

Agenda

5. TLS, SSL and the OpenSSL library.
6. LinuxGetSSL.

43

The SSL/TLS
handshake is too
complex and
rigorous to write
on our own.

OpenSSL is the one
library you get use.

It works on both
Windows and
Linux.

OpenSSL

08 /index.html X +

&« > C @ https://www.openssl.org w

OpenSSL

ryptography and SSL/TLS Toolkit

Home Blog Downloads | Docs News Policies | Community | Support

H * @

Search

Home

Welcome to OpenSSL!

OpenSSL is a robust, commercial-grade, and full-featured toolkit for the
Transport Laver Security (TLS) and Secure Sockets Laver (SSL) protocols. It is
also a general-purpose cryptography library. For more information about the
team and community around the project, or to start making your own
contributions, start with the community page. To get the latest news, download
the source, and so on, please see the sidebar or the buttons at the top of every

page.

OpenSSL is licensed under an Apache-style license, which basically means that
you are free to get and use it for commercial and non-commercial purposes
subject to some simple license conditions.

For a list of vulnerabilities, and the releases in which they were found and fixes,
see our Vulnerabilities page.

T otoct Naoxrce

Downloads: Source code

Docs: FAQ, FIPS, manpages, ...
News: Latest information
Policies: How we operate
Community: Blog, bugs, email, ...

Support: Commercial support and
contracting

Sponsor Acknowledgements

44

But the downloads
are all source only.

You have to build
and install it
yourself.

Hint: It will not
build in directory
path with spaces,
e.g., your Google
drive path.

OpenSSL

08 /source/index.htm X +

& [& 8 https://www.openssl.org/source/

The OpenSSL FIPS Object Module 2.0 (FOM) is also available for download. It is
no longer receiving updates. It must be used in conjunction with a FIPS capable
version of OpenSSL (1.0.2 series). A new FIPS module is currently in

development.

KBytes Date File

5220 2018 oy openssl-1.0.2g.tar.gz (SHA256) (PGP sign) (SHAI)
20 14:07:08 ’

_ 2018-Nov- ¥ < L

5285 90 14:07:08 openssl-1.1.0j.tar.gz (SHA256) (PGP sign) (SHA1)
2018-Nov- 1 B X

8154 90 14:07:08 openssl-1.1.1a.tar.gz (SHA256) (PGP sign) (SHAI)

$457 2017-May- openssl-fips-2.0.16.tar.gz (SHA256) (PGP sign)
24 18:01:01 (SHA1)

i 2017-May- openssl-fips-ecp-2.0.16.tar.gz (SHA256) (PGP sign)
24 18:01:01 (SHAL)

When building a release for the first time, please make sure to look at the
INSTALL file in the distribution along with any NOTES file applicable to your
platform. If you have problems, look at the FAQ, which can be found online. If
you still need more help, then join the openssl-users email list and post a
question there.

PGP keys for the signatures are available from the OMC page. Current members
that sign releases include Richard Levitte and Matt Caswell.

w @

H

45

OpenSSL

1. Install the OpenSSL library. sudo apt-get install libssl-dev

2. Include the openssl #include <openssl/ssl.h>
header.

g++ LinuxGetSsl.cpp -1ssl -lcrypto

3. Compile and link the SSL ,
-0 LinuxGetSsl

and crypto libraries.

#include <openssl/ssl.h>

int SSL_library_init(void);

SSL_library_init() initializes the SSL library.

47

#include <openssl/ssl.h>

int SSL_library_init(void);
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);
SSL *SSL_new(SSL_CTX *ctx);

SSL_library_init() initializes the SSL library.
SSL_CTX_new() creates a new SSL_CTX context object as framework to establish
TLS/SSL enabled connections. Various options regarding certificates, algorithms etc.

can be set in this object.

SSL_new() creates a new SSL structure need to hold the data for a TLS/SSL
connection

48

Here’s an example initializing the SSL layer.
// Build the SSL layer.
SSL_library init();

SSL_CTX *ctx = SSL_CTX_new(SSLv23 method());

assert(ctx);
SSL *ssl = SSL _new(ctx);
assert(ssl);

49

#include <openssl/ssl.h>

int SSL_set fd(SSL *ssl, int fd);

SSL_set_fd() sets the file descriptor fd as the input/output facility for the TLS/SSL
(encrypted) side of ssl. fd will typically be the socket file descriptor of a network
connection.

50

#include <openssl/ssl.h>

int SSL_connect(SSL *ssl);

SSL_connect() initiates the TLS/SSL handshake with a server.

51

Here’s an example initializing the SSL layer.
// Fill in the socket we'll be using.
SSL_set _fd(ssl, s);
// Establish an SSL connection.

int sslConnectResult = SSL_connect(ssl);
assert(sslConnectResult == 1);

52

#include <openssl/ssl.h>

int SSL _write(SSL *ssl, const void *buf, int num);
int SSL_read(SSL *ssl, void *buf, int num);

SSL_write() writes num bytes from the buffer buf into the specified ssl connection.
SSL_read() tries to read num bytes from the specified ssl into the buffer buf.

53

Here’s an example reading and writing.

while ((bytes = SSL read(ssl, buffer,
sizeof(buffer))) > 0)
write(1, buffer, bytes);

Shutdown and free up resources at the end.

SSL_shutdown(ssl);
SSL_free(ssl);
SSL_CTX free(ctx);

6.

LinuxGetSSL.

Agenda

56

Here’s the entire main() for LinuxGetSsl, minus only all the code.

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <openssl/ssl.h>
#include <netdb.h>

int main(int argc, char **argv)
5/ Parse the URL
// Get the host address.
// Create a TCP/IP socket.

// Connect the socket to the host address.

// Build an SSL layer and set it to read/write
// to the socket we've connected.

// Send a GET message.

// Read from the SSL socket until there's no more data, copying it to
// stdout.

// Close the socket and free the address info structure.

}

57

